If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.75x^2=225
We move all terms to the left:
x^2+0.75x^2-(225)=0
We add all the numbers together, and all the variables
1.75x^2-225=0
a = 1.75; b = 0; c = -225;
Δ = b2-4ac
Δ = 02-4·1.75·(-225)
Δ = 1575
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1575}=\sqrt{225*7}=\sqrt{225}*\sqrt{7}=15\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-15\sqrt{7}}{2*1.75}=\frac{0-15\sqrt{7}}{3.5} =-\frac{15\sqrt{7}}{3.5} =-\frac{5\sqrt{7}}{1.16666666667} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+15\sqrt{7}}{2*1.75}=\frac{0+15\sqrt{7}}{3.5} =\frac{15\sqrt{7}}{3.5} =\frac{5\sqrt{7}}{1.16666666667} $
| 3x/6=3 | | 3(n-7)-(8n-7)=10n | | 10(5+2x)9x=80/52 | | -4-15=3-x | | 8(w-7)=5+7w | | 7^5x/7^7x=1/2401 | | 2(m-1)=14 | | 2(m-1)=12 | | 63x-141=180 | | 4w-13=23 | | 8(w-7)=5-7w | | 12=2v-14 | | -18+12y=-6 | | 63x+141=180 | | X-x/4-x/12-x/36=46 | | 4x+7=10x-37 | | 3/4x-4=7/2+1x | | 5x(8x+3x)=2(55) | | n+53+n9=319n= | | 6x+6x=18 | | 40(11+x)=1040 | | 5u-17=73 | | 5(b-3)=25b=8 | | 1/6c=10 | | 6(5b)=54 | | 3x+6=4x×5 | | 2r+3r=-4+6 | | 5x+5=7x-6÷2 | | 2r+3=-4+6 | | 5x-3(4x-7)=-11 | | 4√x+2+3=11 | | 4m^2-27m-49=0 |